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Lecture 8: Plan for estimation (learning)

Review foundations of estimation theory that are relevant to causal
inference.

Statistical models (Parametric and non-parametric).
Correctly specified models.

Motivate why we need to study certain estimation problems.
Convergence of conditional means.

Introduce some commonly used estimators: Regression estimators and
inverse probability weighted estimators.

Brief summary of linear models.
Logistic regression models.
M-estimators.
Link this back to counterfactuals.
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My take on data science

1 Start with the question.
(Design your target trial)

2 Formalize the question in mathematical language.
(Define your estimand)

3 Display the assumptions that are needed to identify your estimand.
(Present your identifiability conditions)

4 Compute estimates of your estimands from your data.
(Do your estimation)

=) we never start the process by considering a regression model
(linear, logistic, Cox model, neural net, random forest, ..., whatever).
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Finite sample inference: Where does randomness come
from?

We will mostly consider superpopulation inference, where the
randomness comes from the fact that we have a random draw from
the superpopulation.

However, in a randomised trial, we do not necessarily need to consider
a superpopulation at all.

In these (simple) settings, we can do finite sample inference.

Yet, we shall see that to generalize the results outside of the study –
which is really what researcher would like to do in most settings – it is
necessary to consider large sample extensions (which usually end up
being superpopulations).
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Superpopulation inference and finite sample inference

We will most often suppose that our study population is sampled at random
from an (essentially) infinite superpopulation, sometimes referred to as the
target population.

Broadly speaking, we aimed to generalize our results to this superpopulation.

It is possible to take a di↵erent point of view in randomised trials, often
called ”design-based inference”, which we will study now. This does not
require the consideration of a superpopulation at all.34

Definition (Design-based inference)

Inference is drawn from a finite population, where the potential outcomes of the
experimental units are fixed and the randomness comes solely from the treatment
assignment.

34However, to generalize results from finite samples to settings outside of the
experiment – even if we start in the design based setting – it is necessary to rely on
superpopulation inference. Thus, if we are interested in using the results from the trials
for decisions (or rigorous reasoning more broadly) outside of the experiment, it seems
that we need to rely on superpopulation inference anyway.
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Fisher Randomisation inference

Key idea: do inference based solely on the assignment mechanism.

The counterfactuals Y a=1

i ,Y a=0

i are considered to be fixed variables.

All the randomness comes from the random assignment of A.

Fisher’s aim was to test the sharp null hypothesis, using Fisher exact
test.

The idea is basically a stochastic proof by contradiction...

Fisher’s null hypothesis is H0 : Y a=1

i ⌘ Y
a=0

i for all i 2 {1, 2, . . . , n}.
In words, the treatment has no e↵ect of the outcomes in no individual.
Under the null hypothesis (but of course not under the alternative)
Y

a=1

i = Y
a=0

i = Yi .

This null hypothesis is called a sharp null hypothesis because it is
specified such that it allows the researcher to fill in a hypothetical
value for each unit’s missing counterfactual outcome

Mats Stensrud Causal Thinking Autumn 2023 219 / 400



Fisher’s exact test: A test of individual e↵ects

Define the sharp null hypothesis H0 : Y a=1

i = Y
a=0

i for all i 2 {1, 2, . . . , n}.

Define a test statistic35, e.g. Sdi↵ = 1

n1

P
i :Ai=1

Yi � 1

n0

P
i :Ai=0

Yi .

Let s⇤ be an observed test statistic. Then P(S � s
⇤) is a p-value, where the

probability is under the law that describes the null hypothesis.

Fisher suggested an exact test.

The idea is to ask the following question: How unusual or extreme is
the observed statistic (say, absolute di↵erence), assuming that the null
hypothesis is true?

Intuitively, we want to have power against alternative hypotheses, but this is
somehow complicated because there are many alternative hypotheses. It
seems reasonable to have good power against alternative hypotheses that
are substantively most interesting.

35A statistic is a known, real-valued function of the data (here,
Y1,A1, L1, . . . ,Yn,An, Ln)
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*Examples of statistics

Averages (like above)

Trimmed means

Quantiles (medians)

T-statistics

Rank statistics (perhaps good when heavy-tailed distributions)

One example is the Kolmogorov-Smirnov Statistic. Define, the empirical
distributions

F̂a=1(y) =
1

n1

X

i :Ai=1

I (Yi  y) F̂a=0(y) =
1

n0

X

i :Ai=1

I (Yi  y).

The Kolmogorov-Smirnov Statistic is

S
ks = sup

y
|F̂a=1(y)� F̂a=0(y)| = max

i
|F̂a=1(Yi )� F̂a=0(Yi )|.
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*We can combine statistics

Fisher’s exact p-value inference is valid when there is one test statistic
and one null hypothesis.

However, we can combine test statistics.
Consider two statistics S1 and S

2.
The combine S

comb = g(S1, S2). (e.g. Scomb = max(S1, S2) )
Then we can calculate a p-value

P(Scomb  s
?,comb)
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Illustration of Fisher’s exact test

Under the sharp H0, we can impute missing values of the counterfactuals

i Y
a=1

i Y
a=0

i Ai Yi

1 �5 -5 1 -5
2 6 6 0 6
3 8 8 1 8
4 0 0 0 0

Table 2: Fisher’s idea
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The idea is resampling without replacement

Consider the estimator 1

n1

P
i :Ai=1

Yi � 1

n0

P
i :Ai=0

Yi . Because we have a

completely randomised experiment, the following
�
4

2

�
= 6 scenarios are

equally possible under H0,

A = (1, 1, 0, 0), ⌧̂ =
�5 + 6� 8� 0

2
= �3.5

A = (1, 0, 1, 0), ⌧̂ =
�5� 6 + 8� 0

2
= �1.5

A = (1, 0, 0, 1), ⌧̂ =
�5� 6� 8 + 0

2
= �9.5

A = (0, 1, 1, 0), ⌧̂ =
5 + 6 + 8� 0

2
= 9.5

A = (0, 1, 0, 1), ⌧̂ =
5 + 6� 8 + 0

2
= 1.5

A = (0, 0, 1, 1), ⌧̂ =
5� 6 + 8 + 0

2
= 3.5
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One way of explaining Fisher’s exact test

1 Do the randomization.

2 Calculate a statistic S , a function of the observed data.

3 Under the assumption of H0, i.e. no individual level causal e↵ect, fill
in missing potential outcomes.

4 Under the assumption of H0, generate many hypothetical replications
of the randomization, and in each of which calculate a statistic Srep.

5 Compare S with the values Srep

This is an example of a permutation test.
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More formally

Define H0 : Y a=1

i = Y
a=0

i .

Now, consider the randomisation distribution of two statistics S

Define F = (Y 0,Y 1). In this case, the randomization distributions of
S = S(A,Y ,L) is

F (s) = P(S  s | F)

Then the one-sided p-value of observing the same value or more extreme of
the observed statistics S is F (S).

In our example, the one-sided p-value is 1� F (�1.5) = 1� 0.5.
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Fisher’s randomization test formally

Theorem (Nominal coverage of the exact test)

Under consistency and H0, P(F (S)  ↵ | F)  ↵ for all ↵ 2 (0, 1).

Proof.
This follows from some basic properties of the distribution function:
indeed, F�1(↵) = sup{s : F (s)  ↵}. Also F (s) is non-decreasing and
right-continuous and therefore

P(F (S)  ↵) = P(S < F
�1(↵)) = lim

s!F�1(↵)
P(S  s)  ↵.

PS: you may have seen the probability integral transform before, i.e. if X is
continuous, then Z = F (X ) ⇠ U(0, 1)

P(F (X )  ↵) = P(X  F
�1(↵)) = F (F�1(↵)) = ↵.
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Conservative or good?

Conservative does not necessarily mean appropriate. Consider a confidence
interval formed by stating that a random 95% of the time, the interval is
any positive or negative number, and that 5% of the time, the interval is
the number 0. Such an interval would cover the true value of any quantity
of interest at least 95% of the time, and thus would also be a
“conservative” interval. It would not, however, be of any use....
Guido W Imbens and Donald B Rubin. Causal inference in statistics,

social, and biomedical sciences. Cambridge University Press, 2015
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Checking for no causal e↵ect (hypothesis testing)

Suppose we want to check if there is no causal e↵ect.

A classical frequentist approach goes as follows
Assume no e↵ect (the null hypothesis).
Calculate a statistic,36 and see how surprising the statistics is, under
the assumption of no e↵ect.
If it is very surprising, we reject.

This is contrapositive logic, applied to probabilities.

36A statistic is a known, real-valued function of the data
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We should be careful with this (Example from Shpitser)

Suppose we do cancer screening.

Consider a rare cancer, our outcome Y , such that
P(Y = 1) = 0.00001
Consider also a cancer lab test T . And suppose

Test false positive P(T = 1 | Y = 0) = 0.01.
Test false negative P(T = 0 | Y = 1) = 0.001.

Suppose we had a positive test, Y = 1. Should we worry?

Just use Bayes theorem,

P(Y = 1 | T = 1) =
P(T = 1 | Y = 1)P(Y = 1)

P(T = 1)
⇡ 0.001.

What would the Frequentist do? Assume Y = 0, and check how
surprised we would be, that is, calculate P(T = 1 | Y = 0) = 0.01,
which is surprising....

Lesson learned, if hypothesis probabilities are uneven, hypothesis
testing is not ideal..
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Abandon Statistical Significance?
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Reasons (may seem obvious, but worth a reminder)

There is nothing wrong with the p-value itself, as a mathematical construct.

However, it is often misused.

p < 0.05 is an arbitrary threshold.

P-hacking is frequently done in practice.

Blakeley B McShane et al. “Abandon statistical significance”. In: The American

Statistician 73.sup1 (2019), pp. 235–245
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Estimation (learning) in causal inference settings (informal
motivation)

An identification formula motivates estimators.
Estimation in causal inference settings is, in principle, identical to the
inverse problem you have studied in previous machine learning or
statistics classes.
However, the functionals we are estimating are sometimes unusual,
and therefore we sometimes need new estimators. Indeed, a lot of
identification results in causal inference have motivated new
estimation theory.
Broadly speaking, causal inference researchers are concerned about
bias.

After doing the hard work of deriving an identification formula, we do
not want to induce bias in the estimation step.

I remind you about how we divide the causal inference into di↵erent
tasks: (i) Define your question of interest (estimand), (ii) Evaluate
whether the estimand is identified, (iii) if it is identified, we proceed
with estimation.

Mats Stensrud Causal Thinking Autumn 2023 233 / 400



Estimation vs. identification

We have considered identification assumptions that are necessary
even if we had an infinite amount of data.

The statistical modeling assumption we consider now are invoked
because we do not have infinite amount of data.

PS: In this course we will mainly consider frequentist inference: probability
is defined as a limiting frequency. An alternative is Bayesian inference,37

which defines probability as a degree of belief.

37Again, this is not the same as a Bayesian network
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Where does randomness come from?

In causal inference

Sampling variability
Like classical statistics

Sample from superpopulation (classical inference)
Sample of counterfactuals (e.g. Fisher Randomization test)

Non-deterministic counterfactuals
But we have assumed that the counterfactuals are deterministic. And,
in practice, that doesn’t change anything when we do
superpopulation inference (we will get to it).
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Where do we do inference

Suppose we estimate the proportion of treated individuals who develop the
outcome (say, death) as

p̂ = P̂(Y = 1 | A = 1) = 7/13,

and I get 95% confidence intervals in the usual way (called Wald intervals)
as

p̂ ± 1.96

r
p̂(1� p̂)

n
.

When is this confidence interval valid and what does it mean?
Example from Hernan & Robins, Chapter 10.3
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There are two options

1 Individuals are sampled at random from an essentially infinite
super-population, sometimes referred to as the source or target
population. Then, if we repeatedly draw random samples of size 13
from the treated individuals in the super-population, the number of
individuals who develop the outcome among the 13 is a binomial
random variable with success probability equal to the true
P(Y = 1 | A = 1).
This is the model we will consider most of the time.

2 We are not considering a super-population; we are doing inference in
the sample we have. We assume that every individual i has a
non-deterministic probability p

a=1

i of experiencing Y = Y
a=1

i = 1
(because we consider those with A = 1). However, for the confidence
interval to be correct, we must assume that pa=1

i is constant in i , say,
p
a=1

i = p. Think about the idea that pa=1

i is constant in i . This
seems very contrived, as we would believe that individuals have
di↵erent risk of the outcome, due to genetics, life style factors etc.
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Motivation for regression modelling and the curse of
dimensionality

Definition (Statistical model)

A statistical model P is a collection of laws, P = {P⌘ : ⌘ 2 �}.

PS: Statistical models are sometimes called probabilistic hypothesis classes
in the machine learning literature.

Definition (Parametric statistical model)

A statistical model P is parametric P = {P✓ : ✓ 2 ⇥}, where ⇥ ✓ Rk for
a positive integer k .

So far we have been non-parametric: we have not restricted ourselves to
parametric models. This is arguably desirable, because then we do not

impose parametric restrictions on the data generating mechanism.
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Consistency of an estimator

Here is an informal definition. Consistency of an estimator with respect to
a parameter (the estimand) means that, when the sample size increases,
the estimates get arbitrarily close to the parameter.
PS: This definition is with respect to an estimator. We have previously
discussed consistency as an identification conditions, concerning
interventions, which is a di↵erent thing.
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More formal definition of consistent estimator (not strictly
needed, but for your information)

Let {P⌘ : ⌘ 2 �} is a family of distributions (laws), and
X⌘ = {X1,X2, . . . : Xi ⇠ P⌘} is an infinitely large sample from the law P⌘.
Let {µ̂n(⌘)} be a sequence of estimators for µ(⌘), where e.g. µ̂n is an
estimator based on the first n observations of a sample. Then the
sequence {µ̂n(⌘)} is said to be (weakly) consistent if

plim
n!1

µ̂n(⌘) = µ(⌘), for all ⌘ 2 �.

where plim denotes convergence in probability, that is,

P⌘(| µ̂n(⌘)� µ(⌘) |> ✏) ! 0 as n ! 1 for all ✏ > 0, ⌘ 2 �.
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Motivation: Simple mean estimation

Suppose we are interested in estimating a parameter, say, h(L,A,Y ) from an
observed sample of n observations, (Li ,Ai ,Yi ), i = 1, . . . , n.

Suppose we would like to ignore the assumptions encoded in our model P
when we study h(L,A,Y ); more precisely, we will only use the fact that we
have draws from i.i.d. individuals where E(Y ) = µ and that Y is continuous
with finite variance �2 < 1.

Our statistical model is non-parametric;
P = {P(Y = y) :

R
y
2
f (y)dy < 1}. For h(L,A,Y ) ⌘ E(Y ), we would

simply do the empirical mean (sample mean) En(Y ) = 1

n

Pn
i=1

Yi . By the
weak law of large numbers (WLLN),

lim
n!1

P(|En(Y )� µ| > ✏) = 0.

So the estimator is consistent. Indeed, the estimator is
p
n-consistent, and

by the CLT
p
n(En(Y )� µ) ⇠ N (0,�2).

Because En(Y ) has variance �2/n, which is OP(1/n), then
p
n(En(Y )� µ) has

variance �2 which is OP(1), i.e. ”bounded in probability” or ”uniformly tight”: A
sequence {Qn} is uniformly tight if for all ✏ > 0 there exists an M s.t.
supn P(|Qn| > M) < ✏.
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Motivation continues

Now, suppose L is continuous and our parameter of interest is the
conditional mean h(L,A,Y ) ⌘ E(Y | L).

In particular, to estimate E(Y | L = l) there exists at most one individual l
with Li = l and En(Y | L = l) = Yi , regardless of n, and clearly we do not
have

p
n-consistency.

Thus, we have to do something else...
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Parameteric modelling

Can we really say that the distribution that generated the data
belongs to a parametric model?

The answer is no in most settings. Therefore many argue that
non-parametric methods are more desirable. And this is why machine
learning methods are blooming.

However, it is often argued that studying parametric models is useful
(i) because they can be good approximations, (ii) sometimes we have
knowledge about the data generating mechanism and (iii) they
provide the background for understanding non-parametric methods.

PS: a saturated model, because it does not impose restrictions on the
data; we just call it a model because it looks like a model, but the model
does not put any restrictions on the data generating mechanism.
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What is bias

Systematic bias: We say there is systematic bias if the causal
estimand of interest is not identified.
Informally, any structural association between the treatment and the
outcome that does not arise from the causal e↵ect of treatment on
the outcome.

Bias due to model misspecification: When we use a statistical model
that is misspecified (I give a formal definition of model
mis-specification in a later slide).
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Motivating example

Suppose the counterfactual data are:

and the average treatment e↵ect E(Y a=1)� E(Y a=0) = 1.
but we observe:

The naive contrast E(Y | A = 1)� E(Y | A = 0) = 7

4
� 6

5
= 0.55.

Example from Oliver Dukes.
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Example continues

However, from the table we see that,

⇡̂(1, group A) =
2

3

⇡̂(1, group B) =
1

3

⇡̂(1, group C) =
1

3

Let us estimate E(Y a=1) by a weighted average, where each observation is
weighted by 1

⇡̂(1,group X)
,Group X 2 {Group A,Group B,Group C},

(1 + 1) 3
2
+ 2 3

1
+ 3 3

1

3

2
+ 3

2
+ 3

1
+ 3

1

= 2

and estimate E(Y a=0) by weighting each observation by 1

⇡̂(0,Group X)
,

Group X 2 {Group A,Group B,Group C},

0 3

1
+ (1 + 1) 3

2
+ (2 + 2) 3

2

3

1
+ 3

2
+ 3

2
+ 3

2
+ 3

2

= 1.
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Estimation when the propensity score is known

When ⇡(a | l) is a known function, the estimator of E(Y a) is

µ̂IPW (a) =
1

n

nX

i=1

I (Ai = a)Yi

⇡(Ai | Li )
.

The propensity score ⇡(a | l), unlike the function Q(l , a), is known in
randomised experiments (it is determined by the investigator). However, in
most observational data settings, it is unknown.
PS: This estimator has been known for a long time and is often called the
Horvitz Thompson estimator in survey sampling38.

38Daniel G Horvitz and Donovan J Thompson. “A generalization of sampling without
replacement from a finite universe”. In: Journal of the American statistical Association

47.260 (1952), pp. 663–685.
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Estimation when the propensity score is unknown

More generally, we can propose a regression model ⇡(A | L; �) for ⇡(A | L),
and we can consider the estimator

µ̂IPW (a) =
1

n

nX

i=1

I (Ai = a)Yi

⇡(Ai | Li ; �)
.

For example, suppose that we fit a logistic regression model and find the
MLE �̂ of �, which is the solution to the estimating equation (See slide
248)

nX

i=1

✓
1
Li

◆✓
Ai �

exp(�1 + �T
2
Li )

1 + exp(�1 + �T
2
Li )

◆
= 0.
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